TASGNSS API Documents
Backend
Source code in tasgnss/core.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 | |
astype(tensor_or_array, dtype)
Convert the data type of the input array/tensor. Automatically dispatches to torch.to(dtype) or np.astype(dtype)
Source code in tasgnss/core.py
266 267 268 269 270 271 272 273 274 | |
block_diag(*arrays)
Create a block diagonal matrix from provided arrays.
Source code in tasgnss/core.py
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 | |
to(tensor_or_array, device)
Move tensor to device (if using torch), or do nothing (if using numpy).
Source code in tasgnss/core.py
276 277 278 279 280 281 282 283 | |
covecef(pos, Q)
Convert covariance from ENU to ECEF Parameters: pos: tuple or array of (lat, lon) in degrees Q: 3x3 covariance matrix in ENU frame Returns: Q_ecef: 3x3 covariance matrix in ECEF frame
Source code in tasgnss/core.py
532 533 534 535 536 537 538 539 540 541 542 | |
doppler_observe_func(vel, dT, pos, satpos, satvel, sdT, sys, enable_torch=False, device='cpu')
Computes Doppler (range-rate) observation residuals and their Jacobian matrix for GNSS velocity estimation. This function models the geometric relative velocity, Earth rotation (Sagnac) correction, and receiver-satellite clock drift difference. The state vector assumed is: [vx, vy, vz, dT] — velocity + public clock drift (no position or clock bias). Clock bias is handled externally (e.g., in pseudorange module), enabling modular design via block_diag fusion.
Parameters: vel : receiver velocity vector, shape (3,) dT : public pseudorange rate for all systems, shape (1,), unit: m/s pos : approximate receiver position (ECEF), shape (3,) — precision ~100m sufficient satpos : satellite positions (ECEF), shape (n_obs, 3) satvel : satellite velocities (ECEF), shape (n_obs, 3) sdT : satellite clock drifts (from broadcast/SP3), shape (n_obs,), unit: s/s sys : list of GNSS system identifiers for each observation, e.g., ['G', 'E', 'C'] enable_torch : if True, use PyTorch backend for computations device : if enable_torch is True, specifies the device ('cpu' or 'cuda')
Returns: v : predicted Doppler velocity residuals (m/s), shape (n_obs, 1) H : Jacobian matrix w.r.t state [vx, vy, vz, dT], shape (n_obs, 4)
Source code in tasgnss/core.py
991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 | |
ecef_to_enu_direct(satpos, recv_pos)
Convert satellite ECEF coordinates to receiver ENU coordinate system. Parameters: satpos : ndarray Satellite ECEF coordinates (n, 3) recv_pos : ndarray Receiver ECEF coordinates (1, 3) Returns: enu : ndarray Satellite ENU coordinates (n, 3)
Source code in tasgnss/core.py
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 | |
enu_to_azel(enu, degree=False)
Convert ENU coordinates to azimuth and elevation angles. Parameters: enu : ndarray ENU coordinates (n, 3), each row represents [E, N, U] Returns: azimuth : ndarray Azimuth angle array (n,) elevation : ndarray Elevation angle array (n,)
Source code in tasgnss/core.py
482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 | |
get_atmosphere_error(gtime, satpos, satprns, nav, p)
Computes modeled atmospheric delay errors (ionospheric, tropospheric) and associated observation variances for a set of satellites at a given epoch. Designed for use in GNSS positioning and quality control — especially in multipath-prone environments like urban canyons.
This function uses RTKLIB’s built-in models:
Ionosphere: IONOOPT_BRDC (broadcast Klobuchar model) Troposphere: TROPOPT_SAAS (Saastamoinen model)
gtime (gtime_t): Epoch time in RTKLIB’s internal time format.
satpos (List[ArrayLike] or ndarray of shape (n, 6)): Satellite positions and velocities for each satellite, packed as [x, y, z, vx, vy, vz] (ECEF, meters and m/s).
satprns (List[int]): List of satellite PRN numbers (e.g., [1, 5, 12, 19]).
nav (nav_t): Navigation data structure containing ionospheric/tropospheric model parameters (e.g., broadcast iono coeffs).
p (ArrayLike, length=3): Receiver approximate position in ECEF coordinates [X, Y, Z] (meters). Used to compute elevation/azimuth and atmospheric delays.
iono_error (ndarray, shape=(n,)): The modeled ionospheric delay per satellite: dion (meters).
trop_error (ndarray, shape=(n,)): The modeled tropospheric delay per satellite: dtrp (meters).
var_el (ndarray, shape=(n,)): Elevation-dependent variance (empirical model, e.g., for multipath suppression in urban canyons). Computed via RTKLIBvar(azel[1], sys).
var_iono (ndarray, shape=(n,)): Broadcast ionospheric model variance (squared standard deviation, m²), output from ionocorr.
var_tropo (ndarray, shape=(n,)): Saastamoinen tropospheric model variance (m²), output from tropcorr.
Processing Steps
Converts receiver ECEF position p to geodetic coordinates (pos) using ecef2pos. For each satellite: Computes line-of-sight vector and satellite elevation/azimuth using geodist and satazel. Calculates ionospheric delay (dion) and its variance (vion) via ionocorr(..., IONOOPT_BRDC, ...). Calculates tropospheric delay (dtrp) and its variance (vtrp) via tropcorr(..., TROPOPT_SAAS, ...). Computes elevation-based variance (vel) using RTKLIBvar(elevation, system) — useful for downweighting low-elevation satellites. Returns arrays of total atmospheric error and component variances.
Source code in tasgnss/core.py
818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 | |
get_obs_pnt(obs, nav, prcopt=None)
Performs Single Point Positioning (SPP) by directly calling RTKLIB’s pntpos() function. Returns the computed position/velocity solution, success/failure status, and diagnostic message.
Ideal for quick, standalone positioning without filters or ambiguity resolution.
obs (obs_t): GNSS observation data structure for one epoch (must contain data[0..n-1] of type obsd_t).
nav (nav_t): Navigation data structure with ephemerides, ionospheric/tropospheric models, and satellite biases.
prcopt (prcopt_t, optional): Processing options (e.g., iono/tropo model, elevation mask, positioning mode). If None, defaults to prl.prcopt_default.
sol (sol_t): Solution structure containing: sol.rr[0:3]: ECEF position [x, y, z] (meters) sol.rr[3:6]: ECEF velocity [vx, vy, vz] (m/s) — if computed sol.time: Epoch time Other metadata (refer to RTKLIB documentation for full details).
status (bool): True → Positioning succeeded (solution is valid) False → Positioning failed (check msg for reason)
msg (str): Diagnostic message from RTKLIB. Common failure reasons: "insufficient satellites" "gdop error" (GDOP too high) "chi-square error" (residual validation failed) "no navigation data"
Processing Flow
Initializes solution and satellite status buffers. Sets solution time to match first observation. Calls RTKLIB’s pntpos() — computes SPP using pseudoranges, applies models (iono/tropo/dcbs), solves least-squares. Returns raw result — no post-filtering or smoothing.
Source code in tasgnss/core.py
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 | |
get_sagnac_corr(satpos, p)
Computes the Sagnac correction (relativistic range correction due to Earth’s rotation) for GNSS positioning. This effect arises because the Earth rotates during signal propagation, causing a relative motion between satellite and receiver in the ECEF frame. The magnitude is typically ~3 meters and must be corrected for precise positioning.
Note: The receiver position p does not need to be highly accurate — even an error of ~100 meters introduces negligible change in the Sagnac correction.
satpos (ndarray, shape=(n, 3) or (n, 6)): Satellite positions in ECEF coordinates [X, Y, Z] (meters). If 6-element vectors are passed (including velocity), only the first three are used.
p (ArrayLike, length=3): Approximate receiver position in ECEF coordinates [X, Y, Z] (meters). Accuracy requirement: ~100 m is sufficient.
sagnac_corr (ndarray, shape=(n,)): Sagnac correction in meters, one value per satellite.
Why It Matters
The Sagnac effect is a relativistic correction that accounts for the fact that the ECEF frame is rotating. As the signal travels from satellite to receiver (~0.07s), the Earth rotates slightly, causing a geometric discrepancy if positions are treated as static in ECEF. This correction ensures consistency with the inertial frame assumption in GNSS signal models.
Source code in tasgnss/core.py
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 | |
get_sat_pos(obsd, n, nav)
Computes satellite positions, velocities, clock biases, and associated ephemeris variances for a given epoch of observations. Filters out satellites with invalid or missing ephemeris data and returns only valid entries.
Note: The input is obsd_t (i.e., obs.data), not obs_t. Typical usage: get_sat_pos(obs.data, obs.n, nav)
obsd (Arr1Dobsd_t or equivalent): Array of observation data for one epoch (e.g., obs.data). Must be contiguous and correspond to n satellites.
n (int): Number of satellites (i.e., number of elements in obsd) for this epoch.
nav (nav_t): Ephemeris and clock data structure, typically populated by read_obs() or equivalent.
rr (Arr1Ddouble, length = 6 * len(mask)): Satellite positions and velocities, packed as [x, y, z, vx, vy, vz] for each valid satellite. Units: meters and meters/second.
dts (Arr1Ddouble, length = 2 * len(mask)): Satellite clock bias and drift, packed as [bias, drift] for each valid satellite. Units: seconds and seconds/second.
var (Arr1Ddouble, length = len(mask)): Ephemeris variance (squared standard deviation) for each valid satellite. Unit: m².
mask (List[int]): List of indices (from original 0..n-1) corresponding to satellites with valid ephemeris data. Used to map back to original observation order.
Processing Details: Internally calls RTKLIB’s satposs() to compute satellite states. Identifies satellites with invalid position data (where |x| < 1e-10) as “no ephemeris”. Constructs a mask of valid satellite indices. Uses helper function arr_select to filter rs, dts, and var arrays according to the mask. Returns filtered arrays and mask.
Source code in tasgnss/core.py
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 | |
prange(obs, nav, opt, var)
Computes the corrected pseudorange for a single satellite observation, applying differential code bias (DCB) and ionospheric delay corrections based on configuration. Supports both single-frequency and ionosphere-free dual-frequency combinations.
obs (obsd_t): Single satellite observation record from an epoch (e.g., obs.data[i]). Must contain pseudorange measurements (P[0], P[1]) and signal codes (code[0], code[1]).
nav (nav_t): Ephemeris and satellite bias structure containing DCB (differential code bias) and TGD (time group delay) corrections.
opt (prcopt_t or equivalent): Processing options structure. Key field: opt.ionoopt: Specifies ionospheric correction mode (e.g., IONOOPT_IFLC for ionosphere-free linear combination).
var (Arr1Ddouble, length ≥ 1): Output array — var[0] is set to the default code variance (0.3² m²) for single-frequency cases. Not modified in dual-frequency mode.
p (float): Corrected pseudorange in meters. Returns 0.0 if: P1 is missing, or Dual-frequency mode is enabled but P2 is missing.
Processing Logic: DCB Correction (C1→P1, C2→P2): Applied for GPS and GLONASS if code type indicates C/A code (CODE_L1C or CODE_L2C). Uses satellite-specific biases from nav.cbias.
Ionosphere-Free Combination (if opt.ionoopt == IONOOPT_IFLC): Uses dual-frequency pseudoranges (P1, P2) to form ionosphere-free linear combination: p = (P2 - γ·P1) / (1 - γ) where γ = (f1/f2)² (frequency ratio squared).
For BeiDou and Galileo, additional TGD/BDG corrections are applied before combination.
System-specific frequency constants and bias models are used (GPS, GLO, GAL, CMP, IRN).
Single-Frequency Mode (default): Applies only TGD or BGD correction to P1. Sets var[0] = 0.3² (default code variance). System-specific TGD models applied (e.g., GPS TGD, GLO –dtaun, GAL BGD, etc.).
Supported GNSS
GPS / QZSS: L1-L2 (IFLC) or L1-only GLONASS: G1-G2 (IFLC) or G1-only Galileo: E1-E5b (IFLC) or E1-only (BGD applied) BeiDou: B1-B2 (IFLC) or B1I/B1Cp/B1Cd (TGD/ISC applied) NavIC (IRNSS): L5-S (IFLC) or L5-only
Source code in tasgnss/core.py
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 | |
preprocess_obs(o, nav, use_cache=True)
Preprocesses GNSS observation data for positioning.
Parameters: o (obs_t): GNSS observation data structure for one epoch. nav (nav_t): Navigation data structure with ephemerides and satellite biases. use_cache (bool, optional): Whether to use cached results if available.
Returns: dict: A dictionary containing preprocessing results and status information.
Source code in tasgnss/core.py
1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 | |
pseudorange_observe_func(pos, dt, satpos, sdt, I, T, sagnac, sys, keep_states=True, enable_torch=False, device='cpu')
Computes pseudorange observation residuals and their Jacobian matrix for GNSS positioning. Models geometric range, Sagnac effect, receiver-satellite clock bias difference, and optional iono/tropo delays. The state vector assumed is: [x, y, z, dt_sys1, dt_sys2, ...] — position + per-system clock bias (no velocity or clock drift). Clock drift is handled externally (e.g., in Doppler module), enabling modular design via block_diag fusion.
Parameters: pos : receiver position (ECEF), shape (3,) dt : receiver clock bias per GNSS system, shape (n_sys,), unit: m → e.g., dt = [dt_GPS, dt_GAL, dt_BDS, ...] satpos : satellite positions (ECEF), shape (n_obs, 3) sdt : satellite clock biases (from broadcast/SP3), shape (n_obs,), unit: s I : ionospheric delay (optional, can be zero), shape (n_obs, 1), unit: m T : tropospheric delay (optional, can be zero), shape (n_obs, 1), unit: m sagnac : precomputed Sagnac correction term (from get_sagnac_corr), shape (n_obs, 1), unit: m sys : list of GNSS system identifiers for each observation, e.g., ['G', 'E', 'C'] keep_states : if False, removes Jacobian columns corresponding to systems with no observation (for WLS compatibility) enable_torch : if True, use PyTorch backend for computations device : if enable_torch is True, specifies the device ('cpu' or 'cuda')
Returns: psr : predicted pseudorange residuals (m), shape (n_obs, 1) H : Jacobian matrix w.r.t state [x, y, z, dt_sys1, dt_sys2, ...], shape (n_obs, 3 + n_active_sys)
Source code in tasgnss/core.py
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 | |
read_obs(rcv, eph, ref=None)
Reads GNSS observation and ephemeris data from RINEX files using RTKLIB’s internal structures.
rcv (str or list of str): Path(s) to RINEX observation file(s) containing receiver measurements. These files are read as observation data (type 1 in RTKLIB).
eph (str or list of str): Path(s) to RINEX navigation/ephemeris file(s). These files are read as ephemeris data (type 2 in RTKLIB).
ref (str or list of str, optional): Path(s) to RINEX observation file(s) from a reference station, used for Real-Time Kinematic (RTK) processing. If provided, these are also read as type 2 (ephemeris-type) data for reference station handling.
Returns: obs_t: RTKLIB structure containing GNSS observation data (pseudorange, carrier phase, etc.). nav_t: RTKLIB structure containing satellite ephemeris, clock, and ionospheric model data. sta_t: RTKLIB structure containing station information (e.g., antenna position, receiver info), primarily populated when reading reference station files.
Source code in tasgnss/core.py
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 | |
split_obs(obs, ref_obs=False)
Splits a monolithic obs_t structure into a list of obs_t objects, each containing observations from a single epoch. This facilitates per-epoch processing in applications such as RTK or time-series analysis.
obs (obs_t): The input observation structure, typically generated by read_obs(). All observations across all epochs are stored in obs.data.
ref_obs (bool, optional, default=True): If True, includes reference station observations (receiver ID = 2) in the split epoch data. If False, only observations from the primary receiver (receiver ID = 1) are retained per epoch.
List[obs_t]: A list of obs_t structures, each representing one epoch’s worth of observation data. Each element contains: .data: Array of observations for that epoch. .n: Actual number of observations in the epoch. .nmax: Maximum allocated size (equal to total observations detected for the epoch).
Behavior: First calls pyrtklib.sortobs(obs) to ensure observations are sorted chronologically by time and receiver. Iterates through epochs using nextobsf(obs, i) to locate epoch boundaries. For each epoch: Allocates a new obs_t structure. Copies observations from receiver 1 (primary). If ref_obs=True, also copies observations from receiver 2 (reference station), appending them after receiver 1’s data. Skips epochs with no primary receiver data. Returns the list of per-epoch obs_t structures.
Source code in tasgnss/core.py
590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 | |
wls_pnt_pos(o, nav, use_cache=True, return_residual=False, enable_torch=False, w=None, b=None, device='cpu')
Performs Weighted Least Squares (WLS) positioning using GNSS observations.
This function implements an iterative WLS algorithm to solve for receiver position, velocity, and clock parameters. It supports caching for performance optimization and PyTorch backend for gradient-based optimization.
Key Features: - Uses caching to accelerate repeated calls with the same observation data - Supports PyTorch backend for gradient propagation, enabling use in neural network optimization - Handles multiple GNSS constellations with separate clock bias parameters - Includes atmospheric and relativistic corrections
o (obs_t): GNSS observation data structure for one epoch. nav (nav_t): Navigation data structure with ephemerides and satellite biases. use_cache (bool, optional): Whether to use cached preprocessing results. When True, if the same observation object is processed multiple times, the preprocessing results (satellite positions, atmospheric corrections, etc.) are cached and reused, significantly speeding up repeated calls. Default is True. return_residual (bool, optional): Whether to return residuals, Jacobian matrix, and weight matrix. When True, the returned dictionary includes a "residual_info" key containing: - "residual": Observation residuals vector - "H": Design matrix (Jacobian) - "W": Weight matrix These can be used to compute Dilution of Precision (DOP) metrics. Default is False. enable_torch (bool, optional): Whether to use PyTorch backend for computations. When True, the function uses PyTorch tensors and operations, allowing gradients to flow through the computation graph. This enables the use of this function in neural network training, where weights (w) and bias (b) can be optimized using gradient descent. Default is False. w (array-like, optional): Weight matrix for pseudorange observations. If enable_torch=True, gradients will propagate through w to the position solution, allowing wp to be optimized in neural networks. Default is None (uses inverse of observation variance). b (array-like, optional): Bias vector to be subtracted from pseudorange observations. If enable_torch=True, gradients will propagate through b to the position solution, allowing b to be optimized in neural networks. Default is None (zero vector). device (str, optional): Device to run PyTorch computations on ('cpu' or 'cuda'). Default is 'cpu'.
dict: A dictionary containing positioning results, status, and additional information with keys: - "status" (bool): True if positioning succeeded, False otherwise - "pos" (array): Receiver position [x, y, z] in ECEF coordinates - "cb" (array): Receiver clock bias for each GNSS system - "cd" (array): Receiver clock drift - "msg" (str): Status message - "data" (array): Processed observation data - "solve_data" (dict): Preprocessed data used in solving - "raw_data" (dict): Raw observation data - "residual_info" (dict, optional): Residuals and Jacobian matrix if return_residual=True
Source code in tasgnss/core.py
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 | |
wls_pnt_pos_vel(o, nav, use_cache=True, return_residual=False, enable_torch=False, wp=None, wv=None, b=None, device='cpu')
Performs Weighted Least Squares (WLS) positioning using GNSS observations.
This function implements an iterative WLS algorithm to solve for receiver position, velocity, and clock parameters. It supports caching for performance optimization and PyTorch backend for gradient-based optimization.
Key Features: - Uses caching to accelerate repeated calls with the same observation data - Supports PyTorch backend for gradient propagation, enabling use in neural network optimization - Handles multiple GNSS constellations with separate clock bias parameters - Includes atmospheric and relativistic corrections
o (obs_t): GNSS observation data structure for one epoch. nav (nav_t): Navigation data structure with ephemerides and satellite biases. use_cache (bool, optional): Whether to use cached preprocessing results. When True, if the same observation object is processed multiple times, the preprocessing results (satellite positions, atmospheric corrections, etc.) are cached and reused, significantly speeding up repeated calls. Default is True. return_residual (bool, optional): Whether to return residuals, Jacobian matrix, and weight matrix. When True, the returned dictionary includes a "residual_info" key containing: - "residual": Observation residuals vector - "H": Design matrix (Jacobian) - "W": Weight matrix These can be used to compute Dilution of Precision (DOP) metrics. Default is False. enable_torch (bool, optional): Whether to use PyTorch backend for computations. When True, the function uses PyTorch tensors and operations, allowing gradients to flow through the computation graph. This enables the use of this function in neural network training, where weights (wp, wv) and bias (b) can be optimized using gradient descent. Default is False. wp (array-like, optional): Weight matrix for pseudorange observations. If enable_torch=True, gradients will propagate through wp to the position solution, allowing wp to be optimized in neural networks. Default is None (uses inverse of observation variance). wv (array-like, optional): Weight matrix for Doppler observations. If enable_torch=True, gradients will propagate through wv to the position solution. Default is None (uses wp*10). b (array-like, optional): Bias vector to be subtracted from pseudorange observations. If enable_torch=True, gradients will propagate through b to the position solution, allowing b to be optimized in neural networks. Default is None (zero vector). device (str, optional): Device to run PyTorch computations on ('cpu' or 'cuda'). Default is 'cpu'.
dict: A dictionary containing positioning results, status, and additional information with keys: - "status" (bool): True if positioning succeeded, False otherwise - "pos" (array): Receiver position [x, y, z] in ECEF coordinates - "velocity" (array): Receiver velocity [vx, vy, vz] in ECEF coordinates - "cb" (array): Receiver clock bias for each GNSS system - "cd" (array): Receiver clock drift - "msg" (str): Status message - "data" (array): Processed observation data - "solve_data" (dict): Preprocessed data used in solving - "raw_data" (dict): Raw observation data - "residual_info" (dict, optional): Residuals and Jacobian matrix if return_residual=True
Source code in tasgnss/core.py
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 | |
xyz2enu(pos, deg=True)
Convert ECEF coordinates to ENU rotation matrix Parameters: pos: tuple or array of (lat, lon) in degrees or radians deg: if True, pos is in degrees, else in radians Returns: E: 3x3 rotation matrix from ECEF to ENU
Source code in tasgnss/core.py
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 | |